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1. Introduction

In recent years there has been rapidly growing interest in "quadtree"

representations for binary images [1-19 ]. Given a 2n by 2 n binary image

I, we construct its quadtree as follows: The root node of the tree cor-

responds to all of I. If I consists of all O's or all l's, we label the

root node 0 or 1, and it is all of the tree. Otherwise, the root node

has four sons corresponding to the four quadrants of I, and we repeat the

process for each of these quadrants. When this construction is complete,

the leaf nodes of the tree correspond to blocls (= sub...subquadrants of I)

consisting entirely of O's or l's. A node at level k (where the root is

at level n) corresponds to a block of size 2 by 2k , in a position

whose coordinates are multiples of 2 k
.  From now on we will call a leaf

node "white" or "black" if'it is labelled 0 or 1, respectively, and we

will refer to nonleaf nodes as "gray." An example of a binary image of

an airplane and its quadtree is shown in Figure 1. In this example we

have n=6 (i.e., the binary image is 64 by 64), so that the tree has seven

levels (including the root); there are no black leaf nodes at levels 6, 5,

4, or 3.

With the aid of the quadtree, we can define a hierarchy of approxima-

tions to the given image I. This can be done in various ways, as discussed

in Section 2. To test the accuracy of these approximations, Section 3

presents an empirical investigation of how fast estimates of the first few

moments of I, computed from the approximations, converge to their true

values, for a large set of binary images of airplanes.

Approximations should also be useful for matching purposes, since

they should make it possible to reject mismatches rapidly. For shapes



that are all similar to one another, however, e.g., for airplanes, the

savings inherent in this approach may not be very great; the use of quad-

trees for matching binary (or arbitrary) images is discussed in Section 4.
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2. Approximations

Given the quadtree representation of a binary image I, we can define

several kinds of approximations to I:

a) Let I(k) , the kth-order inner approximation to I, be the binary

picture defined by the blocks of l's corresponding to the black

nodes at levels k of I's quadtree. Evidently

I(n) <. n-l)< ... < I(0) = I, where "A < B" means that the set

of l's of A is contained in the set of l's of B.

b) Let I(k), the kth-order outer approximation to I, be defined in

the same way as I(k), except that it also contains blocks of l's

corresponding to the gray nodes at level k. It is not hard to

see that I(n) > I(n-l)> ... > 1(0) = I.

These two series of approximations, for the binary image in Figure 1, are

shown in Figure 2. Note that unless I consists entirely of l's, I(n) is

empty; and unless I consists entirely of O's, I(n) is all of I.

The outer approximations to I are actually the complements of ttm

inner approximations to T (the complement of I); in other words,
(k) I(k ) for all k. To see this, let P be any 1 in thus P is

0 in T(k), so that P does not belong to a black node at level a k in the

quadtree of T. ,his is equivalent to saying that P belongs to either a

white node at level a k, or a gray node at level k, in 's quadtree; or,

equivalently, P belongs to either a black node at level a k, or a gray node

at level k, in the quadtree of I, so that P is in I(k), and conversely.

These approximations are reasonable when the l's in I define a compact

shape, but they may not be so useful for shapes that contain elongated

parts, e.g., a "body" and "limbs." In order for I(k) to adequately represent



the limbs, k must be relatively small (2 k must be less than the limb

width); but approximating the body does not require a small k. We can

solve this problem by using approximations based on "maximal" black nodes.

A black node will be called maximal if its block is not adjacent to any

larger block of l's. As we shall see in Section 3, these maximal nodes

comprise about 5% of the black nodes. More generally, a black node will

be called k-maximal if its block is not adjacent to any block of l's that

is at least 2k times as large. In terms of this concept we can define

two additional types of approximations:

c) Let J(k) be defined by the blocks of l's corresponding to the

k-maximal black nodes of the quadtree. Evidently

J(0) -J(1) - ""- (n) = I

d) Analogously, let ,(k) = k where -(k) is the J(k) approximation

to I. Thus J(O) • j(l) >K... I.

These approximations are shown, for the image of Figure 1, in Figure 3.

Typically, most nodes will be k-maximal for relatively small k, so

that J(k) involves nearly all of the nodes; but J(o) is a rather crude

approximation to I. A reasonable compromise is to combine J(0 ) with I(k),

or J(O) with I(k) -- in other words, to use nodes that are either large or

maximal:

e) Ilk) = I(k) v J(o)

f) I ( k ) * -:-, ( k ) v j(O)

Figure 4 shows these approximations for the image of Figure 1. In the next

section we present some empirical results about the accuracy c-d usefulness

of these approximations for a set of airplane shapes.



3. Moment computation

Moments are frequently used for pattern description and recognition

(see [20-22]), since they provide information about the balance and spread

of the gray levels in the pattern relative to given coordinate axes. The

(ij) moment of the picture f(x,y) is defined as

mij - :E f(x,y)x yJ

where the sum is taken over the entire picture. Thus moo is simply the

sum of the gray levels of f. The centroid of f is the point whose coordi-

nates are (mlo/mo0, m01/mo0 ). If we compute moments taking the centroid

as origin, they are called central moments, and are denoted by aij"

When f - I is binary-valued, mij becomes the sum of xiy j for those

points (x,y) at which I has value 1. In particular, m00 is just the number

of l's in I. Given the quadtree representation of I, we can compute its

moments blockwise, since the moments of I are the sums of the moments of

its blocks. On moment computation from quadtree representations see [16].

We will now test the accuracy of our approximations to I by using

them to estimate some of the moments of I. In particular, we investigate

how accurately we can estimate the area of I (m00), the coordinates of

its centroid (mlO/mO and mol/mo0 ), and its second central moments (m20

and

Table I shows approximations a, b, e, and f to these moments for the

airplane image of Figure 1. (Approximations c and d are not shown, since

(c) converges so fast, as we saw in Figure 3.) For each pair of approxi-

mations, (a-b) and (e-f), we also show the estimates obtained by averaging

the "inner" and "outer" approximations of each order. Note that the order-6

"approximations" are the true values. We see that the approximations to

.. .....



the coordinates of the centroid are quite good even at the level where

black leaf nodes first appear; in most cases the errors are only fractions

of a pixel. It seems reasonable to predict that similar results would

hold for larger images; when we use the quadtree levels at which blocks

are, say, 4 by 4 pixels or larger, the errors should be only fractions of

a pixel.

Similar approximations were computed for a set of 112 airplane shapes

shown in Figure 5. (Figure I is the shape in the sixth row, first column.)

Table 2 shows the mean error and standard deviation of the errors for eacn

approximation. We see that the average errors in the centroid coordinates

are consistently low even at the levels where black leaves first appear.

Approximation (e) is especially good.



4. Coarse-fine matching

In order to reduce the computational cost of image matching, a number

of "coarse-fine" matching schemes have been proposed, in which some type

of low-resolution matching is used to rapidly eliminate definite mismatches,

so that full resolution matching need only be performed in the remaining

cases [23-25). In this section we discuss the applicability of quadtree

approximations to coarse-fine matching.

We will consider two types of matching problem: (a) finding a known

pattern in an unknown position; (b) identifying a pattern, in a given posi-

tion, as being one of a given set of patterns. We will refer to these as

the "location" and "identification" problems, respectively.

4.1. Location

The quadtree representation is not especially appropriate for the lo-

cation problem, since the quadtree changes as the input pattern is shifted.

For example, Figure 6 shows the quadtree for the airplane in Figure I when

it is shifted by (l,O),(O,l), and (1,1). It should be pointed out that

shifts by odd amounts cause the greatest changes in the tree; a shift whose

components are high powers of 2 may cause very little change. Thus the

quadtree is quite sensitive to small shifts, as Figure 6 illustrates; note

in particular level I.

Shifts can cause changes even at high levels of the tree; if we shift

an isolated 2k by 2k block of l's by (1,1), it breaks up into a large number

of smaller blocks. Note, however, that one cf these is 2k-l by 2k-l; in

general, when we shift the pattern, a node corresponding to a 2k by 2
k

block always gives rise to at least one node corresponding to a 2
k-l by



2k-1 (or larger) block. If a node corresponds to a non-isolated block,

after shifting it may contribute to a block of much larger size; but if

the given block is maximal, it is not hard to see that it cannot contrib-

ute (after shifting) to a block more than one size larger. Thus shifting

does preserve some sort of crude correspondence, particularly between

maximal nodes. Note, however, that when we shift a maximal node, the

"corresponding" node may no longer be maximal.

The foregoing remarks suggest the following quadtree-based approach

to the location problem: Given the quadtrees Q1 and Q2 of the shifted

and unshifted patterns, consider all pairs composed of a maximal node of

Ql, say at level k, and a node of Q2 at level k-l, k, or k+l. Each of

these pairs defines a possible shift, or rather a range of possible

shifts. For each such shift, we can compute a match score in terms of

the numbers and sizes of node pairs that support it. In the resulting

"correlogram," we may hope to detect a peak representing the actual shift.

Fine matching in the vicinity of this estimated shift could then be used

to locate the pattern exactly.

In practice, this approach seems to be reasonably effective.

Figure 7 shows the "correlogram" for the airplane in Figure 1, unshifted

and shifted by (l,l). There is a peak corresponding to the correct shift,

though many other shifts are also niven high scores.

A more robust approach to the location problem is to use the quadtree

of the shifted pattern to compute an approximation to the centroid, as in

Section 3; the position of this approximation relative to the centroid of

the unshifted pattern then approximately defines the shift. Based on the

results of the previous section, even at the early stages the centroids



are all correctly located to within a fraction of a pixel, so that the

shift can be determined to within a fraction of a pixel by examining the

quadtree levels corresponding to blocks of pixels that are, say, 4 by 4

or larger.

4.2. Identification

We now consider the problem of identifying an unknown pattern as being

one of a given set of patterns. The following quadtree-based approach

suggests itself: Let I' and I" be two of the reference patterns, and let

I be the unknown pattern. At any level of approximation, we determine

bounds on the discrepancy between I and I' (or I"). If the lower bound

on one of these discrepancies, say of I with I. becomes larger than the

upper bound on the (I,I") discrepancy, we can reject I', since it cannot

be as good a match to I as I", and so cannot be the correct match.

The discrepancy between two binary images is the number of points

at which their values differ. We can compute bounds on this discrepancy,

based on the inner and outer approximations at a given quadtree level k,

as follows: The points in I(k) are I in I and 0 in , and the

reverse is true for the points in I'(k)AI(k), thus the number of l's in

the OR of these is a lower bound on discrepancy. On the other hand, we do

not know whether the points in I(k) are I or 0 in I, and similarly for

I'(k)-I'(k) in I', so that (in the worst case) all of these points may con-

tribute to the discrepancy (or nearly all; when a 2m by 2m gray node of I

corresponds to a black leaf in I', for example, the discrepancy cannot be

mmore than 4 -1, since the gray node cannot be all white). Thus we get an

upper bound on the discrepancy by adding the number of l's in (I(k) -I())v

( ,.(k) . ,
(I' -(k)) to the lower bound.



This method does provide some capability for eliminating mismatches

without going all the way down to the pixel level. As an example, Figure 8

shows the quadtrees for two of the airplane shapes and the successive bounds

on the discrepancy when they are matched with themselves and with one

another, level by level. At level 5, the lower bound for the mismatch of

the two shapes with one another exceeds the upper bound for their mismatches

with themselves, so that the unequal pair can be rejected.



5. Concluding remarks

Quadtrees can be used to define various types of approximations to

a binary image. From these approximations we can estimate properties of

the image, such as its moments, with good accuracy using only a fraction

of the quadtree nodes. We can also estimate the position of a shifted

image, either directly or via its centroid coordinates. On the other

hand, the approximations do not seem to be very useful for quickly iden-

tifying one out of a set of images unless the images differ greatly from

one another.
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Sa to 8a

L LB UB

1 0 4096
2 0 2048
3 0 1152

• 4 0 608
5 0 212
6 0 0

j" r8b to 8b

S-1 0 4096

2 0 2304
' 3 0 1216

4 0 592
IL 5 0 200

-- 6 0 0

(a) (b) 8a to 8b

1 0 4096
2 0 2816
3 0 1600
4 352 1392
5 504 900
6 601 601

(c)

Figure 8. Result of matching the airplane in Figure la with
itself and another airplane (row 7, column 1 in
Figure 5). [L=level, LB=lower bound, UB=upper bound.]
Note that at level 5, the lower bound on the mismatch
(8a,8b) exceeds the upper bounds on (8a,8a) and (8b,8b),
so that matching 8a with 8b can be ruled out.



Centroid Second moments
Approximation Order No. of Nodes Area (moo) m10/mO0  mo1/mo0  m20  02

a

2 15 240 35.63 33.50 65.2 35.1
1 53 392 34.64 32.38 73.8 70.5
0 155 494 34.17 32.36 80.7 76.9

b
5 4 4096 31.50 31.50 341.2 341.2
4 8 2048 39.50 31.50 213.2 149.2
3 18 1152 34.61 31.50 106.6 111.1
2 53 848 33.65 31.76 98.2 90.6
1 106 604 33.67 32.35 85.7 84.4
0 155 494 34.17 32.36 80.7 76.9

a+b

5 2048 - - -
4 1024 ....
3 576 - - - -
2 544 34.64 32.63 81.7 62.8
1 498 34.1.5 32.36 79.7 77.4
0 494 34.17 32.36 80.7 76.9

e
5 35 302 34.16 32.93 72.8 72.2
4 35 302 34.16 32.93 72.8 72.2
3 35 302 34.16 32.93 72.8 72.2
2 35 302 34.16 32.93 72.8 72.2
1 59 398 34.64 32.46 75.8 70.6
0 155 494 34.17 32.36 80.7 76.9

f
5 26 1863 38.15 31.48 231.9 131.9
4 30 1863 38.15 31.48 231.9 131.9
3 40 1095 34.39 31.46 110.4 111.7
2 75 823 33.76 31.72 100.4 91.3
1 128 599 33.70 32.32 86.3 84.5
0 177 494 34.17 32.36 80.7 76.9

e+f

5 1082.5 36.15 32.20 152.4 102.0
4 1082.5 36.15 32.20 152.4 102.0
3 698.5 34.27 32.19 91.6 92.0
2 562.5 33.95 32.32 86.6 81.8
1 498.5 34.17 32.38 81.0 77.5
0 494 34.17 32.36 80.7 76.9

Table 1. Approximations to the moments of the airplane in Figure la.



Centroid Second moments
Approximation Order Area (moo) ml0/m00  mi0l/m 0 o m20  m02

a 5 504.1 - - -
4 504.1 - - -
3 457.4 2.22 2.01 42.5 91.4
2 284.6 1.70 0.78 27.8 48.2
1 104.1 0.37 0.20 6.8 12.8
0 0 0 0 0 0

b
5 3563.2 3.38 1.66 272.7 253.9
4 1806.1 2.25 1.25 118.9 156.1
3 752.4 1.22 1.70 45.3 61.1
2 319.8 0.66 0.31 18.2 27.3
1 106.0 0.27 0.14 6.1 10.6
0 0 0 0 0 0

a+b

5 1529.1 - - - -
4 650.6 - - - -
3 143.6 10.35 11,14 15.4 17.0
2 27.3 0.95 0.53 8.5 13.5
1 3.9 0.15 0.11 1.5 2.8
0 0 0 0 0 0

e 5 223.6 0.59 0.34 6.5 11.5
4 223.6 0.59 0.34 6.5 11.5
3 223.6 0.59 0.34 6.5 11.5
2 182.6 0.43 0.29 6.7 6.7
1 92.5 0.34 0.18 5.5 8.6
0 0 0 0 0 0

f
5 1474.5 2.39 1.0 123.4 136.0
4 1467.5 2.40 0.97 121.0 136.9
3 679.1 1.27 0.67 46.4 61.0
2 301.5 0.64 0.31 19.2 28.0
1 101.8 0.27 0.14 6.4 10.6
0 0 0 0 0 0

e+f

5 625.4 1.23 0.53 59.9 70.9
4 621.9 1.24 0.53 58.7 71.4
3 227.8 0.75 0.35 21.4 33.4
2 59.9 0.37 0.20 7.3 12.1
1 5.8 0.12 0.07 1.0 1.8
0 0 0 0 0 0

Table 2a. Means of the errors in approximating the moments of the
112 airplanes in Figure 5.



Centroid Second moments

Approximation Order Area (moo) m 0/m00  m/m m

a
5 110.9
4 110.9 - - - -

3 78.8 1.53 2.41 28.2 29.8
2 56.8 1.21 1.14 21.4 23.8
1 18.8 0.30 0.20 4.3 6.8
0 0 0 0 0 0

b
5 205.9 2.56 1.46 32.4 26.9
4 391.3 1.77 0.99 40.6 46.3
3 151.3 0.88 0.51 24.9 29.4
2 54.3 0.47 0.28 8.8 13.5
1 18.3 0.18 0.14 3.1 5.4
0 0 0 0 0 0

a+b

5 142.6 - - - -

4 198.3 - - - -

3 67.4 6.4 7.0 14.7 12.4
2 18.4 1.8 1.3 8.1 9.7
1 3.2 0.1 0.1 1.5 3.1
0 0 0 0 0 0

e
5 77.3 0.53 0.28 6.2 13.5
4 77.3 0.53 0.28 6.2 13.5
3 77.3 0.53 0.28 6.2 13.5
2 42.6 0.33 0.23 5.0 5.6
1 16.6 0.22 0.16 3.2 5.8
0 0 0 0 0 0

f

5 228.8 1.97 0.80 38.1 35.7
4 235.2 1.98 0.75 37.4 35.5
3 122.8 0.97 0.48 21.9 24.7
2 49.4 0.47 0.27 8.8 13.2
1 16.9 0.19 0.14 3.2 5.4
0 0 0 0 0 0

e+f

5 129.1 1.03 0.39 20.2 20.9
4 133.4 1.03 0.38 19.9 21.3
3 70.6 0.53 0.28 11.1 17.1
2 25.5 0.28 0.17 5.0 7.2
1 4.6 0.10 0.05 1.0 2.0
0 0 0 0 0 0

Table 2b. Standard deviations of the errors in approximating the
moments of the 112 airplanes in Figure 5.




